免费试用
  • Languuage
banner
大数据平台>数据可视化>数据可视化是什么

浅谈对数据可视化的一些理解和总结

作者: admin来源: 未知时间:2017-05-23 15:23:400

 数据可视化是大数据时代处理大数据的高效手段,提起数据可视化,我们不妨先回顾一下大数据的情况。2009 年,“大数据” 开始成为互联网技术行业中的热门词汇。对“大数据”进行收集和分析的设想,起初来自于世界著名的管理咨询公司麦肯锡公司;麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在 2011 年 6 月发布了关于“大数据”的报告,该报告对“大数据”的影响、关键技术和应用领域等都进行了详尽的分析。麦肯锡的报告得到了金融界的高度重视,而后逐渐受到了各行各业关注。

数据可视化的定义

数据可视化的目的其实就是直观地展现数据,例如让花费数小时甚至更久才能归纳的数据量,转化成一眼就能读懂的指标;通过加减乘除、各类公式权衡计算得到的两组数据差异,在图中颜色敏感、长短大小即能形成对比;数据可视化是一个沟通复杂信息的强大武器。通过可视化信息,我们的大脑能够更好地抓取和保存有效信息,增加信息的印象。但如果数据可视化做的较弱,反而会带来负面效果;错误的表达往往会损害数据的传播,完全曲解和误导用户,所以更需要我们多维的展现数据,就不仅仅是单一层面。

数据可视化的背景

我们可以想一想,在大数据没有出现之前,已经有很多对数据加以可视化的经典应用,比如股市里的 K 线,其试图以数据可视化的目的来发现某些规律,信息可以用多种方法来进行可视化,每种可视化的方法都有着不同的着重点,特别是在大数据时代,当你打算处理数据时。首先要明确并理解的一点是:你打算通过数据向你的用户讲述怎样的故事,数据可视化之后又在表达着什么?

通过这些数据,能为你后续的工作做哪一些指导性工作,是否能帮观者正确的抓住重点,了解行业动态?了解这一点之后,你便能选择合理的数据可视化方法,高效传达数据。

当我们能够充分理解数据,并能够轻易向他人解释数据时,数据才有所价值;我们的读者可以通过可视化互动或其他数据使用方式来探寻一个故事的背后发生了什么,因此,数据可视化至关重要。

数据可视化的基础:数据的特性

数据可视化,先要理解数据,再去掌握可视化的方法,这样才能实现高效的数据可视化,下面是常见的数据类型,在设计时,你可能会遇到以下集中数据类型:

量性:数据是可以计量的,所有的值都是数字

离散型:数字类数据可能在有限范围内取值。例如:办公室内员工的数目

持续性:数据可以测量,且在有限范围内,例如:年度降水量

范围性:数据可以根据编组和分类而分类,例如:产量销售量

数据可视化的意义是帮助人更好的分析数据,也就是说他是一种高效的手段,并不是数据分析的必要条件;如果我们采用了可视化方案,意味着机器并不能精确的分析。当然,也要明确可视化不能直接带来结果,它需要人来介入来分析结论。

在大数据时代,可视化图表工具不可能“单独作战”,而我们都知道大数据的价值在于数据挖掘,一般数据可视化都是和数据分析功能组合,数据分析又需要数据接入整合、数据处理、ETL等数据功能,发展成为一站式的大数据分析平台。

数据可视化的用户体验

用户视觉

合格的数据可视化是有新闻价值的。也就是说,它要能帮助目标观众更好地理解数据。有些数据可视化,只让我们看到酷炫狂拽的图形,或者密密麻麻的数据。这些就是过于看重艺术性和科学性,而忽略根本目的了。用信息研究的理论来说,数据看上去过于混乱和密集,用户就会不由自主地「切断数据的传输」。

色彩空间

人类对于颜色感知的方式通常包括三个问题:是什么颜色?深浅如何?明暗如何?在HSV色彩空间中,H 指色相 (Hue),S 指饱和度(Saturation),V 指明度(Value),在 HSL 色彩空间中,L 表示亮度(Lightness)。它们比 RGB 色彩空间更加直观且符合人类对颜色的语言描述。在 1979 年的 ACM SIGGRAPH(美国计算机协会计算机图形学专业组)年度会议上,计算机图形学标准委员会推荐将HSL色彩空间用于颜色设计。

人群中存在一部分人具有视觉缺陷,包括色盲、色弱等。为了帮助他们识别图表,可能需要采取一些特殊方法。

一个好的可视化工程师,必定也是一个好的 UX(用户体验),所以不光要以易读性为目标努力,用户们也要问问自己:这份可视化是给我看的吗?我看的方式是否正确?

在数据可视化的工程中,你在分析中所采取的具体步骤会随着数据集和项目的不同而不同,但在探索数据可视化和数据挖掘时,总体而言应考虑以下四点:

拥有什么数据?

关于数据你想了解什么?

应该使用哪种可视化方式?

你看见了什么,有意义吗?

什么是优秀的可视化作品。我一直认为最好的用户体验是深入浅出,所以,优秀的可视化作品 = 信息 + 故事 + 目标 + 视觉形式,因此,一件可视化作品是从数据 -> 交互 -> 视觉 -> 开发的一个过程。

所以优秀的数据可视化依赖优异的设计,并非仅仅选择正确的图表模板那么简单。全在于以一种更加有助于理解和引导的方式去表达信息,尽可能减轻用户获 取信息的成本。当然并非所有的图表制作者都精于此道。所以我们看到的图表表达中,各种让人啼笑皆非的错误都有。

关于数据可视化的一点总结

定义合适的数据可视化图形,可以说是最为关键的。一般情况来看,线柱饼等基本图形可以完成我们大部分的需求,这也是分析人员最常用的展现形式;但对于大数据场景或具体业务场景下就需要更加特殊的可视化。

归纳起来一名数据可视化工程师需要具备三个方面的能力,数据分析能力、交互视觉能力、研发能力。

不管你用什么工具,别忘了你的目的是理解数据,这可是数据可视化工程师和软件工程师的最大区别。

 

banner
看过还想看
可能还想看
热点推荐
Yonghong的价值观:以卓越的数据技术为客户创造价值,实现客户成功。