免费试用
banner

用R做一个灵活的时间序列数据可视化工具

作者: afenxi来源: afenxi时间:2017-04-08 19:43:080

摘要:数据分析师经常需要看数据。通常而言,数据或存放在MySQL数据库,或存放在Hadoop集群,或存放在阿里云的ODPS上。分析师根据业务需求写SQL语句从数据平台上提取出需要的数据,随后就面临着本文要重点讨论的怎么对数据可视化的难题。

数据可视化的烦恼

数据分析师经常需要看数据。通常而言,数据或存放在MySQL数据库,或存放在Hadoop集群,或存放在阿里云的ODPS上。分析师根据业务需求写SQL语句从数据平台上提取出需要的数据,随后就面临着本文要重点讨论的怎么对数据可视化的难题。

对于一个固定的需求,通常需要观察多组数据。普通一点的分析师,可能是拷贝出一组数据,贴到Excel里,绘个图看一下,然后拷贝下一组数据;高级一点的分析师,可能是用R写好一段代码,然后修改分组的变量取值重复运行代码来观察多组数据。我在工作中动辄需要观察一百组数据,上述两种方法仍然不够好用,最好的方法是我鼠标点击一百次,每点击一次产生一幅图。

更可恶的是,每来一个新需求,不论是Excel还是R都得根据新需求定制化一遍操作或一套代码。

于是某一天,我实在忍不了,就尝试做了一个工具,将SQL写完后的数据可视化工作给工程化了。

这个工具首先支持select查询语句,执行成功后会显示执行结果,同时提供一个设置面板,让用户选择数据分组字段、x轴字段、y轴字段,然后生成分组结果,每点击一个结果,生成该分组数据的图。目前该工具只支持时间序列数据,能够绘制点图和线图。

技术方案

Shiny:R的Web开发框架,让数据分析师能够将分析成果快速转化为交互式网页分享给别人。

它跟通常我们了解的其他框架不一样:其他框架一般都是前后端分离,后端提供json,前端根据json绘图绘表,需要若干个程序员协同开发完成。然而这种可视化的小工具往往是得不到研发资源的支持,只能本数据分析师一人操刀前后端全包。

当一个项目以数据计算和可视化为核心,只投入数据分析师一个人,要求快速实现效果,对执行效率和负载无要求,那么shiny无疑是一个非常诱人的方案。

代码

######################### # 时间序列数据可视化工具 # @author: [email protected] # @date: 2016-07-10 ######################### library(shiny) library(shinyjs) library(DT) library(dplyr) library(tidyr) library(stringr) library(ggplot2) library(scales) library(plotly) run.sql <- function(sql, debug=FALSE) shinyApp(ui=ui, server=server)

注:为了让用户明白工具的使用方法,代码采用shinyjs在适当的时机隐藏/显示对应的组件;在eventReactive事件驱动的计算中,需要保证至少一个依赖与该reactive的组件处于显示状态,否则无法触发计算,observeEvent不存在此问题。

来源:segmentfault  作者:丹追兵

链接:https://segmentfault.com/a/1190000005922907

banner
看过还想看
可能还想看
热点推荐
Yonghong的价值观:以卓越的数据技术为客户创造价值,实现客户成功。
免费试用